A conservative, skew-symmetric finite difference scheme for the compressible Navier–Stokes equations
نویسندگان
چکیده
منابع مشابه
Approximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA Meshless Finite Difference Scheme for Compressible Potential Flows
A meshless solution algorithm for the full potential equation has been developed by applying the principles of the Taylor Least Squares (TLS) method. This method allows for a PDE to be discretized on a local cloud of scattered nodes without the need of connectivity data. The process for discretizing the full potential equation within a meshless framework is outlined along with a novel Hermite T...
متن کاملA Conservative Finite Difference Scheme for Static Diffusion Equation
A new discretization scheme for partial differential equations, based on the finite differences method, and its application to the two dimensional static diffusion equation is presented. This scheme produces better approximations than a standard use of finite differences. It satisfies properties of continuous differential operators and discrete versions of integral identities, which guarantee i...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملA Finite Difference Method for Symmetric Positive Differential Equations
A finite difference method is developed for solving symmetric positive differential equations in the sense of Friedrichs. The method is applicable to partial differential equations of mixed type with more general boundary conditions. The method is shown to have a convergence rate of 0(hxl2), h being the size of mesh grid. Some numerical results are presented for a model problem of forward-backw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Fluids
سال: 2014
ISSN: 0045-7930
DOI: 10.1016/j.compfluid.2014.06.004